If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10m^2-33m-54=0
a = 10; b = -33; c = -54;
Δ = b2-4ac
Δ = -332-4·10·(-54)
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3249}=57$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-57}{2*10}=\frac{-24}{20} =-1+1/5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+57}{2*10}=\frac{90}{20} =4+1/2 $
| (x/5)+14=3x | | 5(x^2)=0.55 | | 5x^2=0.55 | | -3(x-3)=64 | | 4(4x-7)-3x=13(x-5)+37 | | -2+1/4x=-26 | | 10-9x5+6x(-2=) | | -2+1/4x=-96 | | x^2+√11-2x=11x+√11-2x-30 | | 4x-1=3x+3= | | 3x^2/(4x)=6,81 | | -3.4r=68 | | x-(-9-5)=-3(x+18) | | 4x=3x+-54 | | 3x/100=6 | | 8x-6=-13+7x | | -11(a-1)=0 | | 1/2×x=20 | | 2e^2-7e-3=0 | | 1/2·x=20 | | u/13+8=12 | | 12=6+3u | | 1n2-12=13 | | (x+2)/(3x-1)=-2 | | 0.7x-32=1.7 | | 3p/7-12=6 | | 6(a+2)-11(a-1)=-4(2a+9)-13 | | 4(y+4)=20 | | (x+8)/4=x+2 | | (3x+2)/4=2 | | 4x-7/3=13x+2/12 | | (x+1)/5=5 |